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q-deformation of radial problems: the simple harmonic 
oscillator in two dimensions 
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Physics Department, Universily of %mania, GPO Box 252C Hobart, Australia 7001 

Received 18 May 1992 

Abstract. The possibility of q-deformation of known exactly solvable quantum mechanical 
models is considered via the dynamical symmetry of the radial problem. The algebraic 
structure of the Ddimensional simple harmonic oscillator is analysed from this point 
of view. In the two-dimensional case, qdeformed bosons are introduced for the 
radial degrees of freedom, which together with the standard angular operators yield 
an so(2) @ soq(2, 1) dynamical algebra. The corresponding Hilbert space is identified 
and possible 9-deformed Hamiltonians described. 

1. Introduction and main results 

The subject of quantum groups, or quantum universal enveloping algebras has 
received recent impetus from its deep applications in exactly solvable models in 
statistical mechanics 111, conformal field theory, and two-dimensional systems with 
intermediate statistics [2]. Their natural emergence as generalized symmetries of 
physical systems has engendered studies of, for example, their possible rBle as gauge 
symmetries [3]. 

In quantum mechanical problems, there are several ways in which ‘q-deformations’ 
can be addressed. The most ambitious connects with non-commutative geometry [4] 
and, at the level of the Schrodinger equation, uses the apparatus of q-differential 
calculus [5]: within such a programme, q-deformed symmetry algebras would emerge 
directly from q-differential realizations via special choices of potential, magnetic field, 
and the like. More algebraically, one can postulate suitable operators such as q- 
deformed bosons or fermions [6,7,8], and ask what q-symmetries are realized in terms 
of them for suitable Hamiltonians [9] ,  or conversely what Hamiltonians will lead to 
given q-symmetries [10,11]. In this approach there appear to be some dimculties 
in making ordinary dynamics, as expressed by the Heisenberg equations of motion, 
compatible with the q-commutator structures of the postulated oscillators [9]. 

At the level which probes least the details of the underlying dynamics, the 
kinematical degeneracy algebra, or dynamical spectrum generating algebra, may 
simply be replaced by the appropriate q-deformed algebra. Thus, for example, for 
molecular rigid rotors one considers Uq(su(2)), [12]; for the Jaynes-Cummings model 
in quantum optics, U,(s0(2,1)) [13]; and for the ‘quantum hydrogen atom’, forms of 
uq(s0(4)) [14]. In these examples, typically the Hamiltonian, in terms of generators 
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or invariants of the symmeny algebra, is transcribed into the corresponding expression 
in the q-deformed algebra. Thus the spectrum and eigenstates are immediately 
available from the representation theory of the q-deformed case, and moreover a 
one parameter fit to data is possible by adjusting the value of q. 

Finally, a more indirect approach to quantum dynamical symmetries is available 
through the study of the real forms of the q-deformed algebras and the related 
question of embeddings of quantum algebras. This is obviously of paramount 
importance if the q-deformed algebras are to be considered as generalized spacetime 
symmetries; however it is also relevant to the study of dynamical (spectrum- 
gencrating) symmetries which are (for ordinary Lie algebras [15]) in many problems 
identical to familiar spacetime symmetries, with the emergence of nonampact real 
forms directly related to the infinite-dimensional nature of the spectrum of states to 
be encompassed by their unitary representations. 

The thesis of the present paper is that it is most reasonable to look for q- 
deformations of the radial problem, while leaving the angular properties unchanged. 
Thus the procedure alluded to above, of the ad hoc replacement of a dynamical 
symmetly algebra by its q-deformation [14,12, IO] may not be justified if in the 
application envisaged, there is still full rotational symmetry. In the case of the 
simple harmonic oscillator, for example, a Hamiltonian which admits an U,(su(n)) 
degeneracy symmetry [IO] (for n degrees of freedom) is not appropriate if there is 
no suitable undeformed rotational subalgebra. 

In section 2 below, we follow Bracken and Leemon [16] in analysing the algebraic 
structure of the D-dimensional isotropic simple harmonic oscillator. Scalar ladder 
operators for the radial quantum number can be defined having the character of 
modified bosons [17]. Tbgcther with suitably normalized angular momentum shift 
operators they realize the dynamical algebra s0(2,1)$so( D, 2). Consistently with the 
above discussion, it is suggested that a q-deformation allowing at least the dynamical 
symmetry Uq(s0(2, 1)) fB so(D),  is appropriate for the radial q-deformation. 

In section 3 this construction is carried out in detail for the two-dimensional 
case, following the algebraic analysis of [IS]. A doubled space of commuting bosons 
is introduced for the radial sector, one set is q-deformed [6,7,9] the other is not, 
such that for suitable operators on the diagonal (equal occupation number) subspace, 
paying attention to rotational parity, the dynamical algebra Uq(so(2, 1)) $ so(2) is 
realized. 

Concluding remarks are given in section 4 together with comments concerning 
the possible q-differential realization of various alternative q-deformed Hamiltonians 
in the two-dimensional case. 
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2. The isotropic D-dimensional simple harmonic oscillator 

In reference [16], the radial problem of the three dimensional simple harmonic 
oscillator was treated in a purely algebraic fashion for the first time. In this section, 
we shall brieRy describe the way in which it is done, keeping in mind our objective of 
finding an appropriate deformation of part of the symmetry algebra of the problcm. 
It was also noted in [lS] that the construction can easily be extended to the case of 
D > 3 dimensions and it is this case which is sketched here. 

In the coordinate representation of the D-dimensional simple harmonic oscillator, 
one considers a Hamiltonian 
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X = tw ( N  + (D/2))  

where 

N = N, + N2 + . .. + ND 

'dmz 
Ni = ai t U ;  i = 1,2, .  . . D (22) 

( m w z j  + ipj) (2.3) 

(2.4) ( m w r j  - ipj) 

1 a .  = 

a j  t -  - ~ 1 

[ u i , u g  = si,j. (2.5) 

mtiw 

One usually considers a basis of eigenstates of the number operators N;  (and hence 
the Hamiltonian H) of the form 

The bosonic operators a! (respectively a i )  raise (lower) the eigenvalue of N;. From 
the above remarks, these states are energy eigenstates with energy h ( n ,  + nz + 
. . . + nD + (D/2)). This energy eigenvalue is, of course, very degenerate. 

In fact, the Hermitian generators 

(2.7) ( a j a k  + a j a k )  i t  i(ajak - a j a k )  t t  ( a j a k  t + a j a k )  t 

together with the angular momentum generators (of the Lie algebra so( D)) 

t 
k j  Ljs = - ( + . p k  1 - z k p j )  = i(ajak t - a  a ) t i '  

form a basis for the Lie algebra sp(2D,R). The Fcck space decomposes into the 
direct sum of two irreducible (infinite-dimensional) representations of this algebra, 
one spanned by the eigenstates of the number operator N with even N-eigenvalue, 
the other spanned by those states with odd N-eigenvalue. 

As an alternative, one can decompose the the total number operator N with 
respect to operators associated with the total angular momentum and the radial 
quantum number. What is more important from our point of view is that the 
appropriate spectrum generating algebra in this picture is not sp(2D, R) as in the 
case of the coordinate representation, but in fact so(2,l)  @so( D, 2). The quadratic 
Casimir of so(D) is well known to be 2 L j k L j k  and has an eigenvalue 1 ( 1 +  D - 2) 
on some irreducible, highest weight representation, where 1 is a non-negative integer. 
One then defines the operator L + (4D - 1) as the positive, scalar, Hermitian square 
root of the operator f L j k L j k + ( $ D - l ) * .  From this it follows that L has eigenvalues 
1 > 0. Along with this we define an operator IC = f ( N  - L )  (i.e. N = 2IC + L )  
with eigenvalue k > 0, which turns out to be the radial quantum number. 

Moreover, one can find (see the appendix) operators v,vt and A, A t  such that 

A- = v i ,  L = A t  . A  (2.9) 
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and Ut (respectively X i j  is a raising operator for K (L) . That is we have the 
commutation relations 
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[L,Af] = A t  [L,v]  = 0 (2.10) 

[IC,vt] = v t  [K,XJ=O (2.11) 

as well as their conjugate relations. So instead of diagonalising the number operators 
N i ,  one can diagonalize the operators K and L in the Fock space consisting of 
monomials in the creation operators vt,Xr acting upon the vacuum state. 

The generators of the dynamical symmetry algebra for the problem thus 
decomposed into angular and radial parts are 

(2.12) 

(2.13) 

which satisfy the so(2,l) E sp(2, R)  z sI(2, R) relations 

[A", A,] = *A* [At ,  A - ]  = - 2 4  (214) 

while the angular momentum generators (of the Lie algebra so( D)) are given in 
t e r m  of X as 

L j k  i(ajab t - u p f )  = -i(AfAb - X,Xj) t 1 < j,k .$ D. (2.15) 

Adjoining the further 2 0 + 1  generators X,Xt (suitably normalized) and L+ ;( 0-Z),  
(see the appendix ), the entire set of generators provide the spectrum generating 
algebra so(2,l) @so( D, 2). in comparison with the coordinate representation, whose 
fundamental opcrators ai t , a i  furnished us with a realization of thc Lie algebra 
SP(2.0, W. 

3. The 2D simple harmonic oscillator 

As was noted in [19,18] the situation when D = 2 is somewhat different from the 
more general case for D > 2. In particular there is a slight dificulty in correctly 
defining the operator L .  The solution to this problem was given in [is]. If one 
defines the operator M = L,, then one can consistently define the operator L as 

L = I M I  (3.1) 

and this provides L with the property that its eigenvalues are non-negative. Also the 
structure of the operators U and X become much simpler and these operators can, in 
fact, be expressed quite easily in terms of a pair of angular bosonic operators p and 
U defined in terms of pair of common garden variety bosons via 
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These angular bosons satisfy the relations 

[ P J ]  = 1 [U ," t ]  = 1 

[p ,u ]  = 0 [PJ ]  = 0. 

Following [18] we shall now construct suitable operators U and X from which we 
will be able to construct a Fcck space of states which will furnish a representation 
of the algebra U,(s0(2,1)) @ so(2). ?b do this we need hvo commuting sets of 
these angular bosons: one a normal pair, the other a q-deformed pair. Denote 
the undeformed bosons by p l , u I  and the deformed bosons by p2,u2 Let their 
corresponding number operators be N,P,NZ a = 1 , 2  These operators satisfy the 
commutation relations 

[Pl,Pf] = 1 =  [ U l , U , ]  t 

along with 

(3.10) 

(3.11) 

and relations conjugate to these. From these operators we can define a total number 
operator N e ,  total angular momentum operator L ,  =I M ,  I and hence the radial 
operator K ,  by 

N ,  = N,P f NZ M ,  = N t  - NZ K ,  = ; (Ne  - Le). (3.12) 

Let 'I, be the Hilbert-Fock space of states in the monomials pa, ua. A basis 
for the Fcck spaces 'He is provided by the vectors 

I.,.), = r r ; g (p t ) yu t ) s lo )  T , s  > o (3.13) 

where the normalization constants are given by 

where 
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Let us now consider the space 'H = 71, @ 'H2. This space is spanned by the states 

lr1r SI),  @ l7,2ls2)2 r e r s g  2 0. (3.17) 

In particular we will be restricting our attention to the subspace C spanned by the 
vectors 

17,s) = Ir,4@ Ir7s)2. 

This space splits up into the direct sum of subspaces 

c = c- e3 c, @ c,. 
The space C, is spanned by the states 

Ir,s) i ( r - s ) > O  

(3.18) 

(3.19) 

(3.20) 

while C,, is spanned by the states 

I.,.) r 2 0. (3.21) 

The operator M has positive (respectively zero, negative) eigenvalues on the space 
C+ (respectively C,,, C-). Denote by P,  (respectively Pi) the projection operator onto 
the space C, (respectively C, ). 

Define operators on C as follows 

N = $(Nl @ 1 + 1 @ N * )  
K = i ( ICI@l+ 1 @  K,) 

L = f ( L ,  @ 1 t 1 c3 L z ) .  

(3.22) 
(3.23) 

(3.25) 

M = f ( M , @ l + l @ M , )  (3.24) 

Ais0 define 

U = ( I C ,  + l ) - q K l  + L ,  + l)-%,u, @ [IC, + L, t 1],1/~P202 

Ut = pIuf(K1 + l ) - , / 2 ( K l  + L,  + l)-1/2@P;u;[K2 + L,  e 1 p  (3.26) 

With calculations very similar to those performed in [18] one can verify that on 
the space C,, the matrix elements of the above operators are given by 

N l r , s ) = ( r + s ) l r , s )  Iilr,s) = s [ r , s )  L l r , s ) = ( r - s ) I ~ ~ ~ ) =  Mlr,s) 

vIr ,s)= [ s ] ;~Zlr- l , s - l )  U + l r , s ) =  [s+1];/21r+ l , S + l )  (3.27) 

~ l r , s )  = ( r -  s)'/'lr - 1,s) xtlr,.s) = ( r  - s + l)'/'lr -I- 1,s) 
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Similarly, on the space C- we have 
N l r , s ) = ( r + s ) l r , s )  IClr,s) = T / T , s )  Llr,s) = ( s - ~ ) I r , s )  = - M l r , s )  

Y l r , s ) = [ r ] ~ / z I T - l , s - l )  U t I r , s ) = [ r t  l ] : l z l r t 1 , s t l )  (3.28) 

A l r , s )  = (s - r ) ' q r , s  - 1) Atlr,s) = (s- r +  l)'l2lr,s+ 1) 
and on C, we obtain 
Nlr , r )  = 2rlr,r) Klr , r )  = T ] P , T )  Llr,r) = 0 =  M l r , r )  

u I r , r ) = [ r ] ~ / ' l r - l , r - l )  u~~r , r )=1r+11~/ ' l r+1 , r+1)  (3.29) 

~ l r , r )  = O  

the operators IC, L, U, A satisfy 

~ t l r , r )  = lr,r+ I ) +  lr+ 1,r). 
Using the above actions of the operators we can confirm that, upon the space C 

[ IC ,  u t ]  = Y t  [ L, A t ]  = A t  (3.30) 

[IC, Y] = -U [L,A] = - A  (3.31) 

[ I C , A ] = O =  [ I C , A t ]  (3.32) 

[L ,u]=O= L (3.33) 1 >.+I 
[U, A] = 0 = Y) A t  1 1  
[ U t ' A ]  = o =  [ Y t ' X t ]  

along with 

Y t Y  = [IC], .ut = [IC + 11, 

A t A  = L t Q 
where Q is an operator whose only non-zero action is 

Qlr, r t 1) = lr + 1, r)  
Qlr t  1,r) = l r , r t  1). 

A A t  = L t 1 t P,, 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
(3.39) 

So now we come to the question of what is the spectrum generating algebra for 
this system. Let us define operators A,, A,, acting on C by 

(4' (3.41) A- = 

A,, = 4 I C  (3.42) 
Then it may be checked that these generators realize the algebra Up,(so(2, 1))  defined 

1 
d ( g  + q-1) 

by 
[A, ,  A,] = *A,  (3.43) 

[A+,.&] = -[2Au],z. (3.44) 
Thus the set of operators {A*,  A,,, L }  give rise to the spectrum generating 

algebra Uqt(s0(2, 1)) f3 so(2). 
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4. Conclusion 

We have discussed the question of q-deformations of the simple harmonic oscillator 
in quantum mechanics with emphasis on the physical requirement of an undefonned 
angular sector. An algebraic analysis of the radial problem following [16] in the 
D = 3 and [IS] in the D = 2 case has been discussed with a view to q-deformation. 

The analysis carried through for the D = 2 case involved the introduction of a 
doubled Fock space of oscillators, both deformed and undeformed [;1 whose diagonal 
subspace provided the required representation of q-deformed laddering operators 
for the radial quantum number, and which commuted with the angular operators. 
The dynamical symmetry algebra was found to be so9(2,1) @ so(2). Although, 
a posferim', one could start off defining the action of the operators A, v,  K, L 
etc through equations (3.27)-(3.29), the introduction of the tensor product of Fock 
spaces provides us with a realization of the dynamical symmetry algebra, in t e r m  of 
the fundamental bosonic and q-bosonic operators, along with the Hilbert space of 
states of the dynamical system. 

In the general case we would expect the appropriate dynamical algebra to 
be so,(2,1) @ so(D,2) rather than a q-deformed version of the usual specaum 
generating algebra sp(2D, W) arising from the coordinate representation in Cartesian 
coordinates. From the point of view of automorphisms of the q-deformed algebra 
and real forms, with undeformed rotational subalgebra [ZO] ,  this suggests the need 
for a study of structures beyond the usual Chevalley or Cartan-Weyl basis. 

In order to relate the algebraic discussion to a differential realization in the 
coordinate representation, one approach might be to employ the q-analogues of the 
eigenfunctions of the radial problem. Although this provides a readily applicable 
theory of q-orthogonal functions, the formulation of a Schrbdinger equation I211 
in the coordinate representation leading to the q-Laguerre functions as radial 
eigenfunctions founders on the technicalities of the behaviour of q-differentials in 
the separation of variables to angular and radial coordinates. 

A more direct transcription would be to work from standard q-differential 
realizations of s0,(2,1) for the radial sector, together with standard spherical 
harmonics, in order to construct states as wavefunctions. 

As to the form of the Hamiltonian operator, again the purely algebraic treatment 
does not give much insight. A natural choice for the radial sector, which matches 
the above comments concerning the nature of the wavefunctions, would for example 
be the q-deformed conformal supersymmetric quantum mechanics [22], which has 
been shown to admit soq2(2, 1) as a dynamical symmetly. There the radial quantum 
number I< is only formally defined on energy eigenstates, but has a natural differential 
realization in terms of the anticommutator of the factorization operators 

At = (l/&)(F'T-iW(v))T9 A =  ~ - ~ T , - , ( l / ~ ) ( P , + i w ( r ) )  

where P, = -i(d/dr + ( D  - l /Zr)) ,  and Tp = qrdIdr; W(r) is a particular shape 
invariant potential. Then formally 

P D Jamb and T H Baker 

H ,  = 2(qZ" - 1)/((42 - 1)) 

and the operators v = qAq-K/2,  vt = q( ' -K/z )At ,  generate soqZ(2, 1) in the usual 
way. With this system we would have for the total Hamiltonian 

H = h w ( H ,  + L + (0/2)) 
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which has the correct limit 2 K  t L f D / 2  as q + 1. 
The use of quantum enveloping algebras constitutes a marked liberalizarion of 

notions of symmetry in physical problems. The examination of q-deformations of 
dynamical symmetries of soluble problems is one aspect of this programme. Properly 
formulated q-analogues are likely to exhibit significant algebraic and geometrical 
features. 
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Appendix. Derivation of the Lie algebra so(D,2)  

Here we sketch some details of the algebraic construction of the dynamical algebra 
so(2 ,I )  @so(D,  2)  concentrating on the definition and closure relations of operators 
v,vt and X,Xt considered in the text. 

Firstly from (2.5) and the definition (2.8) follows 

t U , L i j  t U j L k i  = 0 ( k l )  

from which, using f L k , L b ,  = L(L t D - 2) ,  

a i L i j L j k + u i ( D - 2 ) L , , f u k L ( L + D - 2 ) = 0  (-44 

a, (L; j  - i L 6 ; j ) ( L j k  t i ( L t D - 2 ) S j k )  = O  

[Lij, Lkl]  = -i ( 6 j k L i 1  - J ikLj l  - 6jlL;k t b ; , L j k )  

or 

(A31 

where the commutation relations 

(k4) 

have been used. From (k3) we may infer that ai may be resolved into vector 
operators 

a .  I = (ui [ ( L  t D - 2) 6 i j  - i L i j ]  + a;  [L6ij t i L i j ] )  (2L t D - 2)-’ 

(‘4.5) E + 

and similarly for 

ut  = (U$+) t ( U j )  t (-1 
I 

which shift L by *l. 
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Since from (AS) 

a r - ) ( 2 ~ + ~ - 2 ) = - a ~ ( a , a ) + a ; ( ~ +  t N + D - ~ )  

as defining fundamental shift operators A; and X i  t after suitable normalization, while 

A;, t A; it is important to verify the closure under commutation. For example 

aj-)(2L + D - 2)aj-)(2L f D - 2 )  

( a f ) ( + ) ( 2 L +  0 - 2 )  = - a ; ( a t . a t ) + a f ( L +  N + D - 2 )  

we have (a!*))t = ( a f ) ( r ) )  and so one can focus on one set, say ai-) and ( a $ - ) ) t ,  

the scalar combinations at . ut, U .  a shift K = $(A’ - L )  by &1 and become the 
radial operators vt and U after normalization. 

In considering the dynamical spectrum-generating algebra generated by vt, Y and 

= (a i (  L + N + D - 2 )  - ai t (a. a)) a j - ) ( 2 ~  + D - 2) 

- - - a t ( a , a ) a j - ) ( 2 ~ + ~ - 2 ) + a ~ a j - ) ( 2 ~ + ~ - 2 ) ( ~ + ~ + ~ - 4 )  
= - a i ( a . a )  t [ - a j ( a . a ) + a j ( ~ +  t N + D - ~ ) ]  

-t = ; ( a .  a) [ - a j ( a .  t u) + a j ( L +  N + D- 211 ( L +  N +  D - 4 )  

= a ; a j ( a . a ) ’  t t  - ( a ; a j  t + a j a ; ) ( a . u ) ( L  t + N f D - 4 )  

+ a ; a j ( L  + N + D - 2 ) ( L  + N + 0 - 4 )  

is manifestly symmetric, so that 

[Xi,Xj] = 0 

and similarly 

(-4.7) 

On the other hand, the combination XiXg t commutes with L, and in fact the 
commutator (with &,Aj t ‘  suitably normalized) closes on Lij and ( L  + t ( D  - 2) )6 i j .  

Thus, as in the case [16] for D = 3, the 2 0  + 1 generators X;,X; t and L + f (  D - 2)  
can be appended to Lij to form the Lie algebra of so(D,2). 
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